ホワイトペーパー
FUJITSU PRIMERGY サーバ
パフォーマンスレポート PRIMERGY TX140 S1P

本書では、PRIMERGY TX140 S1p で実行したベンチマークの概要について説明します。PRIMERGY TX140 S1p のパフォーマンスデータを、他の PRIMERGY モデルと比較して説明しています。ベンチマーク結果に加え、ベンチマークごとの説明およびベンチマーク環境の説明も掲載しています。
目次

ドキュメントの履歴 .. 2
製品データ ... 3
SPECcpu2006 .. 6
SPECjbb2005 .. 11
SPECpower_ssj2008 .. 13
OLTP-2 .. 17
STREAM ... 20
LINPACK .. 23
関連資料 ... 25
お問い合わせ先 ... 25

ドキュメントの履歴

バージョン 1.0

新規:

■ 製品データ
■ SPECcpu2006
 Pentium G640 および Xeon E3-1200 プロセッサシリーズで測定
■ OLTP-2
 Celeron G530、G550、Pentium G640、Xeon E3-1200 プロセッサシリーズで測定
■ STREAM
 Pentium G640 および Xeon E3-1200 プロセッサシリーズで測定
■ LINPACK
 Pentium G640 および Xeon E3-1200 プロセッサシリーズで測定

バージョン 1.1

新規:

■ SPECjbb2005
 Xeon E3-1280V2 で測定
■ SPECpower_ssj2008
 Xeon E3-1265LV2 および HD SATA 3G 160GB 5.4K HOT PL 2.5" ECO x 1 で測定

更新:

■ 製品データ
■ SPECcpu2006
 Core i3-3220 で測定
■ OLTP-2
 Core i3-3220 で測定
■ STREAM
 Core i3-3220 で測定
■ LINPACK
 Core i3-3220 で測定
製品データ

PRIMERGY TX140 S1p（フロアスタンドタイプ）

PRIMERGY TX140 S1p
（ラックマウントタイプ、3.5インチ HDD）

PRIMERGY TX140 S1p
（ラックマウントタイプ、2.5インチ HDD）

本書では、測定単位を示す場合は SI 規格に基づく 10 進接頭辞（例：1 GB = 10^9 バイト）、キャッシュやストレージモジュールの容量を示す場合は 2 進接頭辞（例：1 GB = 2^{30} バイト）で表記しています。その他の例外的な表記をする場合は、別途明記します。
モデルバージョン

<table>
<thead>
<tr>
<th>モデルバージョン</th>
<th>PRIMERGY TX140 S1p</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY TX140S1p/f/LFF/hot plug PSU</td>
<td>フロアスタンドタイプ、3.5インチ HDD に対応、ホットプラグ対応電源</td>
</tr>
<tr>
<td>PY TX140S1p/f/LFF/Standard PSU</td>
<td>フロアスタンドタイプ、3.5インチ HDD に対応、標準電源</td>
</tr>
<tr>
<td>PY TX140S1p/f/SFF/hot plug PSU</td>
<td>フロアスタンドタイプ、2.5インチ HDD に対応、ホットプラグ対応電源</td>
</tr>
<tr>
<td>PY TX140S1p/f/SFF/Standard PSU</td>
<td>フロアスタンドタイプ、2.5インチ HDD に対応、標準電源</td>
</tr>
<tr>
<td>PY TX140S1p/r/f/LFF/hot plug PSU</td>
<td>ラックマウントタイプ、3.5インチ HDD に対応、ホットプラグ対応電源</td>
</tr>
<tr>
<td>PY TX140S1p/r/f/LFF/Standard PSU</td>
<td>ラックマウントタイプ、3.5インチ HDD に対応、標準電源</td>
</tr>
<tr>
<td>PY TX140S1p/r/SFF/hot plug PSU</td>
<td>ラックマウントタイプ、2.5インチ HDD に対応、ホットプラグ対応電源</td>
</tr>
<tr>
<td>PY TX140S1p/r/SFF/Standard PSU</td>
<td>ラックマウントタイプ、2.5インチ HDD に対応、標準電源</td>
</tr>
</tbody>
</table>

形状
- タワー型サーバ

チップセット
- Intel C200 シリーズ

ソケット数
- 1

プロセッサタイプ
- Intel Pentium シリーズ G600
- Intel Core シリーズ i3-3200
- Intel Xeon シリーズ E3-1200

メモリスロットの数
- 4

最大メモリ構成
- 32 GB

オンボード LAN コントローラー
- 1 Gbit/s × 2

オンボード HDD コントローラー
- RAID（0、1、10）機能付きコントローラー（最大 4 台の SATA HDD に対応）

PCI スロット
- PCI-Express 3.0 x16 × 1
- PCI-Express 2.0 x1（x4 形状）× 1
- PCI-Express 2.0 x4（x8 形状）× 1
- PCI 32/33 MHz × 1

最大内蔵ハードディスクの数
- PY TX140S1p/f/LFF/hot plug PSU、PY TX140S1p/f/LFF/Standard PSU、PY TX140S1p/r/LFF/hot plug PSU、PY TX140S1p/r/LFF/Standard PSU：4
- PY TX140S1p/f/SFF/hot plug PSU、PY TX140S1p/f/SFF/Standard PSU、PY TX140S1p/r/SFF/hot plug PSU、PY TX140S1p/r/SFF/Standard PSU：8
プロセッサ（システムリリース以降）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium G640</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2.80</td>
<td>該当せず</td>
<td>該当せず</td>
<td>1066</td>
<td>65</td>
</tr>
<tr>
<td>Core i3-3220</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3.30</td>
<td>該当せず</td>
<td>該当せず</td>
<td>1600</td>
<td>55</td>
</tr>
<tr>
<td>Xeon E3-1220V2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>3.10</td>
<td>3.30</td>
<td>3.50</td>
<td>1600</td>
<td>69</td>
</tr>
<tr>
<td>Xeon E3-1265LV2</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>2.50</td>
<td>3.10</td>
<td>3.50</td>
<td>1600</td>
<td>45</td>
</tr>
<tr>
<td>Xeon E3-1230V2</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>3.30</td>
<td>3.50</td>
<td>3.70</td>
<td>1600</td>
<td>69</td>
</tr>
<tr>
<td>Xeon E3-1240V2</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>3.40</td>
<td>3.60</td>
<td>3.80</td>
<td>1600</td>
<td>69</td>
</tr>
<tr>
<td>Xeon E3-1270V2</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>3.50</td>
<td>3.70</td>
<td>3.90</td>
<td>1600</td>
<td>69</td>
</tr>
<tr>
<td>Xeon E3-1280V2</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>3.60</td>
<td>3.70</td>
<td>4.00</td>
<td>1600</td>
<td>69</td>
</tr>
</tbody>
</table>

メモリモジュール（システムリリース以降）

<table>
<thead>
<tr>
<th>メモリモジュール</th>
<th>場面数</th>
<th>ランク数</th>
<th>メモリチップのビット幅</th>
<th>周波数 [MHz]</th>
<th>低電圧 Load Reduced Registered ECC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2GB (1x2GB) 1Rx8 DDR3-1600 U ECC (2 GB 1Rx8 PC3-12800E)</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1600</td>
<td>✔</td>
</tr>
<tr>
<td>4GB (1x4GB) 2Rx8 DDR3-1600 U ECC (4 GB 2Rx8 PC3-12800E)</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>1600</td>
<td>✔</td>
</tr>
<tr>
<td>8GB (1x8GB) 2Rx8 DDR3-1600 U ECC (8 GB 2Rx8 PC3-12800E)</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>1600</td>
<td>✔</td>
</tr>
</tbody>
</table>

電源（システムリリース以降）

<table>
<thead>
<tr>
<th>電源</th>
<th>最大数</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard PSU 300W</td>
<td>1</td>
</tr>
<tr>
<td>Modular PSU 450W platinum hp</td>
<td>2</td>
</tr>
</tbody>
</table>

国または販売地域によっては、一部のコンポーネントが利用できない場合があります。
詳細な製品データについては、PRIMERGY TX140 S1p データシートを参照してください。
SPECcpu2006
ベンチマークの説明

SPECcpu2006 は、整数演算および浮動小数点演算でシステム性能を測定するベンチマークです。このベンチマークは、12 本のアプリケーションから成る整数演算テストセット（SPECint2006）、および 17 本のアプリケーションから成る浮動小数点演算テストセット（SPECfp2006）で構成されています。これらのアプリケーションは大量の演算を実行し、CPU およびメモリを集中的に使用します。他のコンポーネント（ディスク I/O、ネットワークなど）は、このベンチマークでは測定しません。

SPECcpu2006 は、特定のオペレーティングシステムに依存しません。このベンチマークは、ソースコードとして利用可能で、実際に測定する前にコンパイルする必要があります。したがって、使用するコンパイラのバージョンやその最適化設定が、測定結果に影響を与えます。

SPECcpu2006 には、2 つのパフォーマンス測定方法が含まれています。1 つ目の方法（SPECint2006 および SPECfp2006）では、1 つのタスクの処理に必要な時間を測定します。2 つ目の方法（SPECint_rate2006 および SPECfp_rate2006）では、スループット（並列処理できるタスク数）を測定します。いずれの方法も、さらに 2 つの測定の種類、「ベース」と「ピーク」に分かれています。これらは、コンパイラ最適化を使用するかどうかという点で異なります。「ベース」値は常に公開されていますが、「ピーク」値はオプションです。

<table>
<thead>
<tr>
<th>ベンチマーク</th>
<th>演算</th>
<th>タイプ</th>
<th>コンパイラ最適化</th>
<th>測定結果</th>
<th>アプリケーション</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECint2006</td>
<td>整数</td>
<td>ピーク</td>
<td>アグレッシブ</td>
<td>速度</td>
<td>単体実行</td>
</tr>
<tr>
<td>SPECint_base2006</td>
<td>整数</td>
<td>ベース</td>
<td>標準</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECint_rate2006</td>
<td>整数</td>
<td>ピーク</td>
<td>アグレッシブ</td>
<td>スループット</td>
<td>多重実行</td>
</tr>
<tr>
<td>SPECint_rate_base2006</td>
<td>整数</td>
<td>ベース</td>
<td>標準</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECfp2006</td>
<td>浮動小数点</td>
<td>ピーク</td>
<td>アグレッシブ</td>
<td>速度</td>
<td>単体実行</td>
</tr>
<tr>
<td>SPECfp_base2006</td>
<td>浮動小数点</td>
<td>ベース</td>
<td>標準</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECfp_rate2006</td>
<td>浮動小数点</td>
<td>ピーク</td>
<td>アグレッシブ</td>
<td>スループット</td>
<td>多重実行</td>
</tr>
<tr>
<td>SPECfp_rate_base2006</td>
<td>浮動小数点</td>
<td>ベース</td>
<td>標準</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

測定結果は、個々のベンチマークで得られた正規化比の幾何平均です。算術平均と比較して、幾何平均の方が、ひとつの飛び抜けて高い値に左右されない平均値です。「正規化」とは、テストシステムがリファレンスシステムと比較してどの程度高速であるかを測定することです。例えば、リファレンスシステムの SPECint_base2006、SPECint_rate_base2006、SPECfp_base2006、および SPECfp_rate_base2006 の結果が、値「1」と判定されたとします。このとき、SPECint_base2006 の値が「2」の場合は、測定システムがこのベンチマークをリファレンスシステムの 2 倍の速さで実行したことを意味します。SPECfp_rate_base2006 の値が「4」の場合は、測定対象システムがリファレンスシステムの約 4/3 倍の速さでのベンチマークを実行したことを意味します。「ベースコピー数」とは、実行されたベンチマークの並行インスタンスの数です。

弊社では、SPEC の公開用に、SPECcpu2006 のすべての測定値を提出しているわけではありません。そのため、SPEC の Web サイトに公開されていない結果が一部あります。弊社では、すべての測定のログファイルをアーカイブしているので、測定の内容に関していつでも証明できます。
ベンチマーク環境

<table>
<thead>
<tr>
<th>SUT (System Under Test：テスト対象システム)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ハードウェア</td>
<td></td>
</tr>
<tr>
<td>モデル</td>
<td>PRIMERGY TX140 S1p</td>
</tr>
<tr>
<td>プロセッサ</td>
<td>Pentium G640, Core i3-3220, Xeon E3-1200 プロセッサシリーズ</td>
</tr>
<tr>
<td>メモリ</td>
<td>8GB (1x8GB) 2Rx8 L DDR3-1600 U ECC x 2</td>
</tr>
<tr>
<td>オペレーティングシステム</td>
<td>Red Hat Enterprise Linux Server release 6.2</td>
</tr>
<tr>
<td>オペレーティングシステム設定</td>
<td>echo always > /sys/kernel/mm/redhat_transparent_hugepage/enabled</td>
</tr>
<tr>
<td>コンパイラ</td>
<td>Intel C++/Fortran Compiler 12.1</td>
</tr>
</tbody>
</table>

国または販売地域によっては、一部のコンポーネントが利用できない場合があります。
ベンチマーク結果

プロセッサのベンチマーク結果は、主にプロセッサのキャッシュサイズ、ハイパースレッディングのサポート、プロセッサコアの数およびプロセッサ周波数によって異なります。ターボモードを備えたプロセッサの場合、最大プロセッサ周波数はベンチマークによって負荷がかかるコア数に依存します。主に1コアのみに負荷がかかるシングルスレッドベンチマークの場合、達成可能な最大プロセッサ周波数はマルチスレッドベンチマークよりも高くなります（「製品データ」セクションのプロセッサ表を参照）。

SPECint base2006

<table>
<thead>
<tr>
<th>プロセッサ</th>
<th>SPECint2006</th>
<th>SPECint_rate_base2006</th>
<th>SPECint_rate2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium G640</td>
<td>34.4</td>
<td>62.0</td>
<td>64.5</td>
</tr>
<tr>
<td>Core i3-3220</td>
<td>42.0</td>
<td>91.3</td>
<td>95.7</td>
</tr>
<tr>
<td>Xeon E3-1220V2</td>
<td>48.6</td>
<td>152</td>
<td>159</td>
</tr>
<tr>
<td>Xeon E3-1265LV2</td>
<td>48.0</td>
<td>169</td>
<td>176</td>
</tr>
<tr>
<td>Xeon E3-1230V2</td>
<td>51.1</td>
<td>184</td>
<td>192</td>
</tr>
<tr>
<td>Xeon E3-1240V2</td>
<td>52.2</td>
<td>188</td>
<td>196</td>
</tr>
<tr>
<td>Xeon E3-1270V2</td>
<td>53.6</td>
<td>192</td>
<td>200</td>
</tr>
<tr>
<td>Xeon E3-1280V2</td>
<td>54.5</td>
<td>192</td>
<td>200</td>
</tr>
</tbody>
</table>

SPECfp base2006

<table>
<thead>
<tr>
<th>プロセッサ</th>
<th>SPECfp2006</th>
<th>SPECfp_rate_base2006</th>
<th>SPECfp_rate2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium G640</td>
<td>40.2</td>
<td>60.1</td>
<td>61.4</td>
</tr>
<tr>
<td>Core i3-3220</td>
<td>53.3</td>
<td>83.7</td>
<td>86.6</td>
</tr>
<tr>
<td>Xeon E3-1220V2</td>
<td>64.8</td>
<td>125</td>
<td>129</td>
</tr>
<tr>
<td>Xeon E3-1265LV2</td>
<td>63.6</td>
<td>126</td>
<td>130</td>
</tr>
<tr>
<td>Xeon E3-1230V2</td>
<td>67.3</td>
<td>133</td>
<td>137</td>
</tr>
<tr>
<td>Xeon E3-1240V2</td>
<td>68.4</td>
<td>134</td>
<td>139</td>
</tr>
<tr>
<td>Xeon E3-1270V2</td>
<td>69.8</td>
<td>136</td>
<td>141</td>
</tr>
<tr>
<td>Xeon E3-1280V2</td>
<td>70.3</td>
<td>136</td>
<td>140</td>
</tr>
</tbody>
</table>
次の4つのグラフは、PRIMERGY TX140 S1pとその旧モデルであるPRIMERGY TX140 S1のスループットを比較したものです。それぞれ最大のパフォーマンス構成になっています。
SPECcpu2006：浮動小数点演算性能
PRIMERGY TX140 S1p と PRIMERGY TX140 S1 の比較

SPECfp2006
SPECfp_base2006

PRIMERGY TX140 S1
Xeon E3-1280

PRIMERGY TX140 S1p
Xeon E3-1280V2

58.9
70.3
61.5
72.4

SPECfp_rate2006
SPECfp_rate_base2006

PRIMERGY TX140 S1
Xeon E3-1280

PRIMERGY TX140 S1p
Xeon E3-1280V2

118
136
122
140

+18%
+19%
+15%
+15%
SPECjbb2005
ベンチマークの説明
SPECjbb2005 は、Java サーバプラットフォームのパフォーマンスを評価する Java ビジネスベンチマークです。これは、本質的には SPECjbb2000 をアップデートしたもので、主な違いは次のとおりです。

- トランザクションは、多様な機能範囲に対応するために、より複雑になっています。
- ベンチマークのワーキングセットは、システムの負荷の増大に対応するために、拡大されています。
- SPECjbb2000 では、アクティブな Java 仮想マシンインスタンスは 1 つのみ許可されていましたが、SPECjbb2005 では複数のインスタンスが許可され、特に大規模なシステムで実環境との高い近似性を得ることができます。

SPECjbb2005 は、ソフトウェアについては主にジャストインタイムコンパイラで使用される JVM と、スレッドおよびガーベジコレクションの実装のパフォーマンスを測定します。使用されるオペレーティングシステムの機能も評価します。ハードウェアについては、CPU およびキャッシュの効率、メモリアプリケーション、共有メモリシステム（SMP）のスケーラビリティを評価します。ディスクおよびネットワーク I/O は無関係です。

SPECjbb2005 は、最近の代表的なビジネスプロセスアプリケーションである 3 階層クライアント/サーバシステムをエミュレートしたもので、中間層システムに重点を置いています。

- クライアントは、TPC-C ベンチマークを基にしたドライバスレッドを負荷として生成し、データベースへの OLTP アクセスを思考時間ゼロで行います。
- 中間層システムは、ビジネスプロセスおよびデータベースの更新を実装します。
- データベースはデータ管理を行い、メモリ内の Java オブジェクトによりエミュレートされます。トランザクションのログ記録は XML ベースで実装されます。

このベンチマークの主な利点は、シングルホスト上で 3 つの層すべてを実行できることです。中間層のパフォーマンスが測定されます。このため、大規模なハードウェアの設置は不要となり、異なるシステムの SPECjbb2005 の結果を直接比較できます。クライアントとデータベースのエミュレーションも Java で記述されています。

SPECjbb2005 には、オペレーティングシステムと J2SE 5.0 機能に対応した Java 仮想マシンのみが必要です。スケーリングの単位は、約 25 MB の Java オブジェクトから成るウェアハウスです。1 つのウェアハウスにつき、1 つの Java スレッドがオペレーションを実行します。これらのビジネスオペレーションは TPC-C で次の項目を前提としています。

- 新規オーダー発注
- 支払
- オーダーのディスプレイ
- 納入
- 在庫レベル監視
- 顧客レポート

ただしこれらは SPECjbb2005 と TPC-C が共通して持っている機能にすぎません。2 つのベンチマークの結果は比較できません。

SPECjbb2005 には、次の 2 つの性能指標があります。

- bops (1 秒あたりのビジネスオペレーション) は、1 秒あたりのすべてのビジネスオペレーションの処理レートです。
- bops/JVM は、上記の性能指標（bops）とアクティブな JVM インスタンス数の比率です。

SPECjbb2005 のさまざまな結果の比較では、両方の性能指標を考慮する必要があります。これらの性能指標の測定は、次のようなベンチマークのルールに準拠しています。

ベンチマーク測定は、ウェアハウス数（スレッド数）が増加する一連の測定ポイントで構成され、それぞれにおいてウェアハウス数は 1 つずつ増加します。測定は 1 ウェアハウスで開始され、2^MaxWh （少なくとも 8 ウェアハウス）まで実行されます。MaxWh は、ベンチマークで予想される秒あたりの処理レートが最
高になるウェアハウス数です。デフォルトでは、MaxWh はオペレーティングシステムで認識される CPU の数と同じ値が設定されます。
性能指標の bops は、MaxWh ウェアハウスと 2*MaxWh ウェアハウス間のすべての測定ポイントのオペレーション速度の算術平均です。

ベンチマーク環境

<table>
<thead>
<tr>
<th>SUT (System Under Test: テスト対象システム)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハードウェア</td>
</tr>
<tr>
<td>モデル</td>
</tr>
<tr>
<td>プロセッサ</td>
</tr>
<tr>
<td>メモリ</td>
</tr>
<tr>
<td>ソフトウェア</td>
</tr>
<tr>
<td>BIOS 設定</td>
</tr>
<tr>
<td>オペレーティングシステム</td>
</tr>
<tr>
<td>オペレーティングシステム設定</td>
</tr>
<tr>
<td>JVM</td>
</tr>
<tr>
<td>JVM 設定</td>
</tr>
</tbody>
</table>

国または販売地域によっては、一部のコンポーネントが利用できない場合があります。

ベンチマーク結果

SPECjbb2005 bops = 429269
SPECjbb2005 bops/JVM = 214635

次のグラフは、PRIMERGY TX140 S1p とその旧モデルである PRIMERGY TX140 S1 のスループットを比較したものです。それぞれ最大のパフォーマンス構成になっています。
SPECpower_ssj2008

ベンチマークの説明

SPECpower_ssj2008 は、サーバクラスのコンピュータを対象とした、消費電力とパフォーマンスの特性を評価する業界標準の SPEC ベンチマークです。SPEC は、SPECpower_ssj2008 をリリースし、パフォーマンスの評価と同じ手法で、サーバの消費電力測定の標準を定義しました。

ベンチマークのワークロードは、典型的なサーバサイド Java ビジネスアプリケーションの負荷をシミュレートします。ワークロードはスケーラブルで、マルチスレッド化されており、さまざまなプラットフォームで利用でき、簡単に実行できます。ベンチマークは、CPU、キャッシュ、SMP（symmetric multiprocessor systems：対称型マルチプロセッサシステム）のメモリ階層とスケーラビリティに加え、JVM（Java Virtual Machine：Java 仮想マシン）、JIT（Just In Time：ジャストインタイム）コンバイラー、ガーベージコレクション、スレッドなどの実装や、オペレーティングシステムのいくつかの機能をテストします。

SPECpower_ssj2008 では、100 ％から「アクティブアイドル」まで 10 ％区切りで、さまざまなパフォーマンスレベルにおける一定時間の消費電力をレポートします。この段階的なワークロードは、サーバの処理負荷および消費電力が、日や週によって大きく変化することを反映しています。すべてのレベルにおける電気効率指標を計算するには、各パフォーマンスレベル（セグメント）で測定したトランザクションスループットを合計し、各セグメントの平均消費電力の合計で割ります。結果は、overall ssj_ops/watt という性能指数です。この値から測定対象サーバのエネルギー効率に関する情報が得られます。測定標準が定義されていることにより、SPECpower_ssj2008 で測定される値を他の設定やサーバと比較することができます。ここでは示すグラフは、SPECpower_ssj2008 の標準的な結果のグラフです。

ベンチマークは、さまざまなオペレーティングシステムおよびハードウェアアーキテクチャーで実行され、大がかりなクライアントやストレージインフラストラクチャを必要としません。SPEC に準拠したテストで必要な最低限の機材は、ネットワークで接続された 2 台のコンピュータと、電力アナライザと温度センサーが 1 台ずつです。コンピュータの 1 台は、SUT（System Under Test：テスト対象システム）で、サポート対象のオペレーティングシステムと JVM が実行されます。JVM は、Java で実装されている SPECpower_ssj2008 ワークロードを実行するために必要な環境を提供します。もう 1 台のコンピュータは、CCS（Control & Collection System：収集および制御システム）で、ベンチマークの動作を制御し、レポートに使用する電力、パフォーマンス、および温度のデータを取得します。この図は、ベンチマーク構成の基本構造とさまざまなコンポーネントの概要を示しています。
ペンチマーク環境

SUT（System Under Test : テスト対象システム）

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハードウェア</td>
<td></td>
</tr>
<tr>
<td>モデル</td>
<td>PRIMERGY TX140 S1p</td>
</tr>
<tr>
<td>モデルバージョン</td>
<td>PY TX140S1p/10SFF/Standard PSU</td>
</tr>
<tr>
<td>プロセッサ</td>
<td>Xeon E3-1265LV2</td>
</tr>
<tr>
<td>メモリ</td>
<td>4GB (1x4GB) 2Rx8 L DDR3-1600 U ECC x 2</td>
</tr>
<tr>
<td>ネットワークインタフェース</td>
<td>オンボード LAN コントローラー（1ポートを使用）</td>
</tr>
<tr>
<td>ディスクサブシステム</td>
<td>オンボード HDD コントローラー</td>
</tr>
<tr>
<td></td>
<td>HD SATA 3G 160GB 5.4K HOT PL 2.5” ECO x 1</td>
</tr>
<tr>
<td>ソフトウェア</td>
<td></td>
</tr>
<tr>
<td>BIOS</td>
<td>BIOS: R1.10.0 FW: 6.51A</td>
</tr>
<tr>
<td>BIOS設定</td>
<td>SATA Mode Selection = AHCI Mode</td>
</tr>
<tr>
<td></td>
<td>Adjacent Sector Prefetch = Disabled</td>
</tr>
<tr>
<td></td>
<td>Hardware Prefetch = Disabled</td>
</tr>
<tr>
<td></td>
<td>USB Port Control = Disable all Ports</td>
</tr>
<tr>
<td></td>
<td>Intel Virtualization Technology = Disabled</td>
</tr>
<tr>
<td></td>
<td>ASPM Support = Auto</td>
</tr>
<tr>
<td></td>
<td>P-State coordination = SW_ANY</td>
</tr>
<tr>
<td></td>
<td>LAN 1 Port = Disable</td>
</tr>
<tr>
<td>オペレーティングシステム</td>
<td>Microsoft Windows Server 2008 R2 Enterprise SP1</td>
</tr>
<tr>
<td>オペレーティングシステム設定</td>
<td>Using the local security settings console, “lock pages in memory” was enabled for the user running the benchmark.</td>
</tr>
<tr>
<td></td>
<td>Power Management: Enabled ("Fujitsu Enhanced Power Settings" power plan)</td>
</tr>
<tr>
<td></td>
<td>Set “Turn off hard disk after = 1 Minute” in OS.</td>
</tr>
<tr>
<td></td>
<td>Benchmark was started via Windows Remote Desktop Connection.</td>
</tr>
<tr>
<td>JVM</td>
<td>Oracle Java HotSpot(TM) 64-Bit Server VM on Windows, version 1.6.0_31</td>
</tr>
<tr>
<td>JVM設定</td>
<td>start /affinity [0x3,0xC,0x30,0xC0] -server -Xmx1024m -Xms1024m -Xmn853m</td>
</tr>
<tr>
<td></td>
<td>-XX:ParallelGCThreads=2 -XX:SurvivorRatio=60 -XX:TargetSurvivorRatio=90</td>
</tr>
<tr>
<td></td>
<td>-XX:InlineSmallCode=3900 -XX:MaxInlineSize=270 -XX:FreqInlineSize=2500</td>
</tr>
<tr>
<td></td>
<td>-XX:AllocatePrefetchDistance=256 -XX:AllocatePrefetchLines=4</td>
</tr>
<tr>
<td></td>
<td>-XX:InitialTenuringThreshold=12 -XX:MaxTenuringThreshold=15 -XX:LoopUnrollLimit=45</td>
</tr>
<tr>
<td></td>
<td>-XX:+UseCompressedStrings -XX:+AggressiveOpts -XX:+UseLargePages</td>
</tr>
<tr>
<td></td>
<td>-XX:+UseParallelOldGC</td>
</tr>
</tbody>
</table>

国または販売地域によっては、一部のコンポーネントが利用できない場合があります。
ベンチマーク結果

PRIMERGY TX140 S1p で次の結果が得られました。

SPECpower_ssj2008 = 5,887 overall ssj_ops/watt

左のグラフは、上記の測定結果を示しています。赤い横棒は、グラフの y 軸で示された各目標負荷レベルに対する電力性能比（単位：ssj_ops/watt, x 軸の上目盛）を表しています。青い線は、小さなダイヤで示された各目標負荷レベルにおける平均消費電力（x 軸の下目盛）が描く曲線を表しています。黒い縦線は、PRIMERGY TX140 S1p の出したベンチマーク結果である、5,887 overall ssj_ops/watt を表しています。これは、各負荷レベルでのトランザクションスループットの合計を各測定での平均消費電力の合計で割ったものです。

次の表は、各負荷レベルにおけるスループット（単位：ssj_ops）、平均消費電力（単位：W）、およびエネルギー効率の詳細を表しています。

<table>
<thead>
<tr>
<th>パフォーマンス</th>
<th>ssj_ops</th>
<th>電力 (W)</th>
<th>エネルギー効率 ssj_ops/watt</th>
</tr>
</thead>
<tbody>
<tr>
<td>100％</td>
<td>417,806</td>
<td>55.3</td>
<td>7,552</td>
</tr>
<tr>
<td>90％</td>
<td>379,054</td>
<td>52.8</td>
<td>7,181</td>
</tr>
<tr>
<td>80％</td>
<td>334,346</td>
<td>46.9</td>
<td>7,128</td>
</tr>
<tr>
<td>70％</td>
<td>291,224</td>
<td>40.2</td>
<td>7,239</td>
</tr>
<tr>
<td>60％</td>
<td>248,867</td>
<td>36.0</td>
<td>6,905</td>
</tr>
<tr>
<td>50％</td>
<td>209,078</td>
<td>33.4</td>
<td>6,259</td>
</tr>
<tr>
<td>40％</td>
<td>168,269</td>
<td>30.5</td>
<td>5,516</td>
</tr>
<tr>
<td>30％</td>
<td>124,943</td>
<td>28.1</td>
<td>4,452</td>
</tr>
<tr>
<td>20％</td>
<td>84,388</td>
<td>25.5</td>
<td>3,307</td>
</tr>
<tr>
<td>10％</td>
<td>41,606</td>
<td>22.9</td>
<td>1,816</td>
</tr>
<tr>
<td>アクティブアイドル</td>
<td>0</td>
<td>18.9</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\frac{\sum ssj_ops}{\sum power} = 5,887 \]
次のグラフは、各負荷レベルでの消費電力（右の y 軸）とスループット（左の y 軸）について、PRIMERGY TX140 S1p とその旧モデルである PRIMERGY TX140 S1 を比較したものです。

新しい Ivy-Bridge プロセッサ世代により、PRIMERGY TX140 S1p は PRIMERGY TX140 S1 と比較すると、ほぼ同一の電力消費量で非常に高いスループットを実現しています。その結果、PRIMERGY TX140 S1p のエネルギー効率は全体で 30% 向上しています。
OLTP-2
ベンチマークの説明
OLTP とは、Online Transaction Processing（オンライントランザクション処理）の略です。OLTP-2 ベンチマークは、データベースソリューションの標準的なアプリケーションシナリオを基にしています。OLTP-2 では、データベースアクセスがシミュレートされ、1 秒あたりに実行されるトランザクションの数（tps）が測定されます。

独立した機関によって標準化され、その規則を順守して測定しているかを監視される SPECint や TPC-E のようなベンチマークとは異なり、OLTP-2 は、富士通が開発した固有のベンチマークです。OLTP-2 は、データベースのベンチマークとしてよく知られている TPC-E を基に開発されました。そして、CPU やメモリの構成に応じてシステムがスケーラブルな性能を示すことを実証するために、さまざまな構成で測定できるように設計されています。

OLTP-2 と TPC-E の 2 つのベンチマークが同じ負荷プロファイルを使用して同様のアプリケーションのシナリオをシミュレートしても、この 2 つのベンチマークは異なる方法でユーザーの負荷をシミュレートするため、結果を比較したり同等のものとして扱うことはできません。通常、OLTP-2 の値は、TPC-E に近い値となります。しかし、価格性能比が算出されないため、直接比較できないだけでなく、OLTP-2 の結果を TPC-E として利用することも許可されません。
詳細情報は、『ベンチマークの概要 OLTP-2』を参照してください。

ベンチマーク環境
一般的な測定環境を次に示します。
ここで示す測定結果は、次の構成の PRIMERGY システムすべてで有効です。

データベースサーバ（B 層）

<table>
<thead>
<tr>
<th>ハードウェア</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>プロセッサ</td>
<td>Celeron G530、G550, Pentium G640, Core i3-3220, Xeon E3-1200 プロセッサシリーズ</td>
</tr>
<tr>
<td>メモリ</td>
<td>32 GB : 8 GB (1x8GB) 2Rx8 DDR3-1600 U ECC × 4</td>
</tr>
<tr>
<td>ネットワークインタフェース</td>
<td>オンボード LAN 1 Gbps × 2</td>
</tr>
<tr>
<td>ディスクサブシステム</td>
<td>RAID 0（OS 用）, RAID 1（ログ用）, RAID 5（データ用）</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ソフトウェア</th>
</tr>
</thead>
<tbody>
<tr>
<td>オペレーティングシステム</td>
</tr>
<tr>
<td>データベース</td>
</tr>
</tbody>
</table>

アプリケーションサーバ（A 層）

<table>
<thead>
<tr>
<th>ハードウェア</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>モデル</td>
<td>PRIMERGY RX200 S6 × 1</td>
</tr>
<tr>
<td>プロセッサ</td>
<td>Xeon X5647 × 2</td>
</tr>
<tr>
<td>メモリ</td>
<td>12 GB, 1333 MHz Registered ECC DDR3</td>
</tr>
<tr>
<td>ネットワークインタフェース</td>
<td>オンボード LAN 1 Gbps × 2, デュアルポート LAN 1 Gbps × 2</td>
</tr>
<tr>
<td>ディスクサブシステム</td>
<td>73 GB 15k rpm SAS ドライブ × 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ソフトウェア</th>
</tr>
</thead>
<tbody>
<tr>
<td>オペレーティングシステム</td>
</tr>
</tbody>
</table>

クライアント

<table>
<thead>
<tr>
<th>ハードウェア</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>モデル</td>
<td>PRIMERGY RX200 S5 × 1</td>
</tr>
<tr>
<td>プロセッサ</td>
<td>Xeon X5570 × 2</td>
</tr>
<tr>
<td>メモリ</td>
<td>24 GB, 1333 MHz Registered ECC DDR3</td>
</tr>
<tr>
<td>ネットワークインタフェース</td>
<td>オンボード LAN 1 Gbps × 2</td>
</tr>
<tr>
<td>ディスクサブシステム</td>
<td>73 GB 15k rpm SAS ドライブ × 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ソフトウェア</th>
</tr>
</thead>
<tbody>
<tr>
<td>オペレーティングシステム</td>
</tr>
<tr>
<td>ベンチマーク</td>
</tr>
</tbody>
</table>

国または販売地域によっては、一部のコンポーネントが利用できない場合があります。
ベンチマーク結果
データベースのパフォーマンスは、CPUやメモリの構成と、データベースで使用するディスクサブシステムの接続性によって大きく異なります。次に示すプロセッサの性能評価では、メモリとディスクサブシステムはどちらも適切であり、ボトルネックにならないものとします。
データベース環境でメインメモリを選択するときのガイドラインとして、メモリアクセス速度よりも、メモリ容量が十分にあることが重要です。そのため、8 GBモジュールの最大構成で測定しました。
次のグラフは、レビュー対象のプロセッサ（1基）で測定した OLTP-2 トランザクションレートを示しています。
多種類のプロセッサにより、広範にわたるレベルのパフォーマンスが実現されていることがわかります。パフォーマンスが最も低いプロセッサ（Celeron G530）を使用した場合に比べ、パフォーマンスが最も高いプロセッサ（Xeon E3-1280V2）を使用した場合は、OLTP-2値は4倍になっています。
測定結果が示す性能と機能に基づき、プロセッサをいくつかのグループに分類できます。
最もパフォーマンスが低いのは、ハイパースレッディング機能をサポートしていない、わずか2コアのプロセッサであるCeleronとPentiumです。
その次のグループのプロセッサは、OLTP-2でより高いパフォーマンスを達成しています。これは、ターボモードをサポートしない2コアのプロセッサCore i3-3220です。
Xeon E3プロセッサのグループのうち、2コアでL3キャッシュがわずか3 MBのXeon E3-1220LV2は、パフォーマンスでは下位ですが、消費電力が17 Wと、今回のレビュー対象プロセッサの中で最小です。4コアプロセッサでは、パフォーマンスが大幅に向うします。これは、OLTP-2の測定では多くの場合、コア数を2倍にすると、パフォーマンスもほぼ2倍になるからです。
ハイパースレッディング機能で論理的なプロセッサコア数が2倍になることによっても、OLTP-2の測定でより優れた結果が得られます。そのため、ハイパースレッディング機能をサポートしないXeon E3-1220V2に比べて、ハイパースレッディング機能をサポートするXeon E3-1320V2では、パフォーマンスが急上昇します。
STREAM
ベンチマークの説明

STREAM は、メモリのスループットを測定するために長年使用されてきた総合的なベンチマークで、John McCalpin 氏がデラウェア大学に教授として在職中に、氏によって開発されました。現在はバージニア大学でサポートされており、ソースコードを Fortran または C のいずれでもダウンロードできます。STREAM は、特に HPC（ハイパフォーマンスコンピューティング）分野で、重要な役割を担っています。例えば、STREAM は、HPC Challenge ベンチマークスイートの一部として使用されています。このベンチマークは、PC とサーバシステムの両方で使用できるように設計されています。測定単位は、[GB/s] であり、1 秒あたりにリード／ライト可能なギガバイト数です。

STREAM では、シーケンシャルアクセスでのメモリスループットを測定します。メモリ上のシーケンシャルアクセスは、CPU キャッシュが使用されるため、一般的にランダムアクセスより高速です。ベンチマーク実行前に、測定環境に合わせて、STREAM のソースコードを調整します。また、CPU キャッシュによる測定結果への影響ができるだけ少なくなるよう、データ領域のサイズは、全 CPU キャッシュの総容量の 4 倍以上にする必要があります。ベンチマーク中にプログラムの一部を並列実行するために、OpenMP プログラムライブラリを使用します。これにより、利用可能なプロセッサコアに対して最適な負荷分散が行われます。

STREAM ベンチマークでは、8 バイトの要素で構成されるデータ領域が、4 つの演算タイプに連続的にコピーされます。COPY 以外の演算タイプでは、算術演算も行われます。

<table>
<thead>
<tr>
<th>演算タイプ</th>
<th>演算</th>
<th>ステップあたりのバイト数</th>
<th>ステップあたりの浮動小数点演算</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPY</td>
<td>a(i) = b(i)</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>SCALE</td>
<td>a(i) = q × b(i)</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>SUM</td>
<td>a(i) = b(i) + c(i)</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>TRIAD</td>
<td>a(i) = b(i) + q × c(i)</td>
<td>24</td>
<td>2</td>
</tr>
</tbody>
</table>

スループットは、演算タイプ別に GB/s で表されます。しかし最近のシステムでは、通常、演算タイプによる値の差はほとんどおらずです。そのため、一般的に、性能比較には TRIAD の測定値だけが使用されます。測定結果は、主にメモリシーケンスのクロック周波数によって変わります。また、算術演算は、CPU によって影響を受けます。結果の精度は約 5 %です。

本章では、スループットを 10 のべき乗で表示しています。（1 GB/s = 10^9 Byte/s）
ベンチマーク環境

<table>
<thead>
<tr>
<th>SUT (System Under Test : テスト対象システム)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ハードウェア</td>
<td></td>
</tr>
<tr>
<td>モデル</td>
<td>PRIMERGY TX140 S1p</td>
</tr>
</tbody>
</table>
| プロセッサ | Pentium G640
Core i3-3220
Xeon E3-1200 プロセッサシリーズ |
| メモリ | 8GB (1x8GB) 2Rx8 L DDR3-1600 U ECC x 2 |
| ソフトウェア | |
| BIOS 設定 | Hyper-Threading = Disabled |
| オペレーティングシステム | Red Hat Enterprise Linux Server release 6.2 |
| オペレーティングシステム設定 | echo never > /sys/kernel/mm/redhat_transparent_hugepage/enabled |
| コンパイラ | Intel C Compiler 12.1 |
| ベンチマーク | Stream.c Version 5.9 |

国または販売地域によっては、一部のコンポーネントが利用できない場合があります。
ベンチマーク結果

<table>
<thead>
<tr>
<th>プロセッサ</th>
<th>最大メモリ周波数 [MHz]</th>
<th>TRIAD [GB/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium G640</td>
<td>1066</td>
<td>15.4</td>
</tr>
<tr>
<td>Core i3-3220</td>
<td>1600</td>
<td>22.1</td>
</tr>
<tr>
<td>Xeon E3-1220V2</td>
<td>1600</td>
<td>22.6</td>
</tr>
<tr>
<td>Xeon E3-1265LV2</td>
<td>1600</td>
<td>22.6</td>
</tr>
<tr>
<td>Xeon E3-1230V2</td>
<td>1600</td>
<td>22.6</td>
</tr>
<tr>
<td>Xeon E3-1240V2</td>
<td>1600</td>
<td>22.6</td>
</tr>
<tr>
<td>Xeon E3-1270V2</td>
<td>1600</td>
<td>22.6</td>
</tr>
<tr>
<td>Xeon E3-1280V2</td>
<td>1600</td>
<td>22.6</td>
</tr>
</tbody>
</table>

測定結果は主に最大メモリ周波数によって変わります。
次のグラフは、PRIMERGY TX140 S1p とその旧モデルである PRIMERGY TX140 S1 のスループットを比較したものです。それぞれ最大のパフォーマンス構成になっています。
LINPACK
ベンチマークの説明
LINPACK は、1970 年代に Jack Dongarra 氏他数名によって、スーパーコンピュータの性能を評価するため
に開発されました。このベンチマークは、線形方程式系の解析および解き用のライブラリ関数を集めたもの
です。詳細は次のドキュメントで参照できます。
LINPACK では、N 次元の線形方程式系を解く速度を測定します。結果は、GFlops (Giga Floating Point
Operations per Second : 10 億浮動小数点演算／秒)で示されます。これと浮動小数点演算を 1 秒間に 10
億回実行することを示す単位です。求解に必要な浮動小数点演算の回数は次の式によって決定されます。

\[\frac{2}{3} \times N^3 + 2 \times N^2 \]

LINPACK の演算では、メソッドで N × N サイズの行列データを配置する必要があります（値 N は求解
する方程式の数です）。使用可能なメモリを十分に利用できるような最大値を N に設定した場合に、
最大の性能が達成されます。しかし、このような最大値の決定には非常に時間をかかること、期待される結
果の向上はごくわずかです。また、システムのメモリ制限は結果にほとんど影響しません。これは、ベン
チマークの実行中に主に浮動小数点演算が実行され、データ交換は並列プロセッサ間でほとんど起こらないた
めです。そのため、ベンチマーク結果は、最大値より若干低い N の値から求められます。
LINPACK は、HPC (High Performance Computing : 高性能計算) の分野で代表的なベンチマークの 1 つで
す。また、LINPACK は、HPC チャレンジベンチマーク (HPC 環境における他の性能の侧面を考慮に入れ
たベンチマーク) を構成する 7 つのベンチマークの 1 つです。

Intel プロセッサを搭載したシステム用に、Intel は高度に最適化された LINPACK バージョンを提供していま
す。最適なパラメーター値が、現在のプロセッサアーキテクチャを基に、ソフトウェアによって自律的に
決められます。Intel が提供するもう 1 つのバージョンは、分散システムで使用する HPL (High-
Performance Linpack : 高性能 LINPACK) 基に基づくもので、サーバ間の相互通信が MPI (Message Passing
Interface : メッセージ通信インターフェース) を介して行われます。このバージョンでは、パラメーター値
は構成ファイルで設定します。どちらのバージョンも、http://software.intel.com/en-us/articles/intel-
math-kernel-library-linpack-download/ からダウンロードできます。
LINPACK の結果は http://www.top500.org/ で公表される可能性があります。公開にあたっての前提条件は、
MPI (Message Passing Interface) ベースのバージョンを使用することです
（http://www.netlib.org/benchmark/hpl を参照）。
プロセッサコアの理論的な最大性能は、1 クロックサイクル内に実行される浮動小数点演算の回数から得ら
れます。例えば、クロック周波数が 2.4 GHz で 1 サイクルあたり 4 回の浮動小数点演算を実行するシング
ルプロセッサコアの最大性能は 9.6 GFlops になります。測定結果と最大値の比率は、浮動小数点演算に関
するシステムの効率を示します。演算中のメモリアクセス回数が少ないほど、この比率は高くなります。

ベンチマーク環境

<table>
<thead>
<tr>
<th>SUT (System Under Test: テスト対象システム)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハードウェア</td>
</tr>
<tr>
<td>モデル</td>
</tr>
<tr>
<td>プロセッサ</td>
</tr>
<tr>
<td>メモリ</td>
</tr>
<tr>
<td>ソフトウェア</td>
</tr>
<tr>
<td>BIOS 設定</td>
</tr>
<tr>
<td>オペレーティングシステム</td>
</tr>
<tr>
<td>ベンチマーク</td>
</tr>
</tbody>
</table>

国または販売地域によっては、一部のコンポーネントが利用できない場合があります。
ベンチマーク結果

使用可能なメインメモリは 16 GB なので、次元数を N = 40000 としました。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium G640</td>
<td>2</td>
<td>2.80</td>
<td>該当せず</td>
<td>22.4</td>
<td>20.8</td>
<td>93</td>
</tr>
<tr>
<td>Core i3-3220</td>
<td>2</td>
<td>3.30</td>
<td>該当せず</td>
<td>22.4</td>
<td>46.7</td>
<td>88</td>
</tr>
<tr>
<td>Xeon E3-1220V2</td>
<td>4</td>
<td>3.10</td>
<td>3.30</td>
<td>106</td>
<td>96.0</td>
<td>91</td>
</tr>
<tr>
<td>Xeon E3-1265LV2</td>
<td>4</td>
<td>2.50</td>
<td>3.10</td>
<td>99.2</td>
<td>90.5</td>
<td>91</td>
</tr>
<tr>
<td>Xeon E3-1230V2</td>
<td>4</td>
<td>3.30</td>
<td>3.50</td>
<td>112</td>
<td>102</td>
<td>91</td>
</tr>
<tr>
<td>Xeon E3-1240V2</td>
<td>4</td>
<td>3.40</td>
<td>3.60</td>
<td>115</td>
<td>104</td>
<td>90</td>
</tr>
<tr>
<td>Xeon E3-1270V2</td>
<td>4</td>
<td>3.50</td>
<td>3.70</td>
<td>118</td>
<td>107</td>
<td>90</td>
</tr>
<tr>
<td>Xeon E3-1280V2</td>
<td>4</td>
<td>3.60</td>
<td>3.70</td>
<td>118</td>
<td>107</td>
<td>90</td>
</tr>
</tbody>
</table>

ターボモードをサポートしないプロセッサでは、理論最大値が次の式で計算されます。

\[GFlops_{max} = \frac{1}{\text{クロックサイクルあたりの浮動小数点演算回数}} \times \text{プロセッサコア数} \times \text{プロセッサ周波数 [GHz]} \]

ターボモードをサポートするプロセッサは、公称プロセッサ周波数に制限されないため、プロセッサ周波数が一定ではありません。この場合、実際のプロセッサ周波数は、公称プロセッサ周波数と完全負荷状態での最大ターボ周波数の中間に位置します。これらのプロセッサの理論最大値を計算するには、次の式を使用します。

\[GFlops_{max} = \frac{1}{\text{クロックサイクルあたりの浮動小数点演算回数}} \times \text{プロセッサコア数} \times \text{完全負荷状態での最大ターボ周波数 [GHz]} \]

次のグラフは、PRIMERGY TX140 S1p とその旧モデルである PRIMERGY TX140 S1 のスループットを比較したものです。それぞれ最大のパフォーマンス構成になっています。
関連資料

<table>
<thead>
<tr>
<th>タイトル</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMERGY システム</td>
<td>http://primergy.com/</td>
</tr>
<tr>
<td>PRIMERGY TX140 S1p データシート（英語）</td>
<td>http://docs.ts.fujitsu.com/dl.aspx?id=4ab73c7f-cc90-4734-837d-4df5104e36fd</td>
</tr>
<tr>
<td>RAID コントローラーのパフォーマンス</td>
<td>http://docs.ts.fujitsu.com/dl.aspx?id=e34159fa-0196-4a01-99ff-8792b5f644eb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>タイトル</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINPACK</td>
<td>http://www.netlib.org/linpack/</td>
</tr>
<tr>
<td>OLTP-2 ベンチマークの概要 OLTP-2</td>
<td>http://docs.ts.fujitsu.com/dl.aspx?id=9775e8b9-d222-49db-98b1-4796b9d6d7a</td>
</tr>
<tr>
<td>SPECpower_ssj2008 ベンチマークの概要 SPECpower_ssj2008</td>
<td>http://www.spec.org/power_ssj2008</td>
</tr>
<tr>
<td>STREAM</td>
<td>http://www.cs.virginia.edu/stream/</td>
</tr>
<tr>
<td>PC サーバ PRIMERGY（プライマジー）</td>
<td>http://jp.fujitsu.com/platform/server/primergy/</td>
</tr>
</tbody>
</table>

お問い合わせ先

富士通

Webサイト：http://jp.fujitsu.com/

PRIMERGY のパフォーマンスとベンチマーク

mailto:primergy.benchmark@ts.fujitsu.com

知的所有権を含むすべての権利は弊社に帰属します。製品データは変更される場合があります。納品までの時間は在庫状況によって異なります。データおよび機の完全性、正確性、または正確性について、弊社は一切の責任を負いません。本書に記載されているハードウェアおよびソフトウェアの名称は、それぞれのメーカーの商標等である場合があります。第三者が他の目的でこれらの機を使用した場合、当該所有者の権利を侵害することがあります。詳細については、http://www.fujitsu.com/fts/resources/navigation/terms-of-use.htmlを参照してください。