
日独バイオマスデー「木質バイオマスのエネルギー利用」

木質バイオマスエネルギー利用における日本の技術課題

2013年11月5日

環境・エネルギー部 相川 高信 aichu@murc.jp

目次

- I. 日本のバイオマスエネルギー利用の実態
 - *本発表では、主に熱利用に絞って分析を行う
- II. 新しいやり方が必要だ

日本のバイオマス利用の実態

日本におけるバイオマス熱利用の実態

■ 日本では、近代的なバイオマスボイラの導入台数はまだ少ない

日本における木質バイオマスボイラの導入状況(2011年度末)

燃料種別	使用形態	導入 台数	平均出力 (kW)	主な用途	主な導入施設
チップ	温水	98	310	暖房、給湯、加温	温浴施設、福祉施設、 宿泊施設/等
	蒸気	17	1,670	プロセス蒸気、木材 乾燥、暖房、給湯	工業施設、木材加工 施設/等
	計	115	-		
ペレット	温水	414	260	冷暖房、給湯、加温	温浴施設、宿泊施設、 学校·保育園/等
	蒸気	3	370	プロセス蒸気、木材 乾燥、暖房、給湯	工業施設/等
	温風	122	90	暖房(農業利用)	農業用ハウス
	計	539	-		

テクノロジー: 日本メーカーの活躍に期待

- チップボイラーの国産メーカーは少ない
- ガス化発電などに関心を持つメーカーが多いが、商用化には至っていない。

メーカー別のチップボイラーの導入実績

メーカー	玉	台数
シュミット	スイス	57
オヤマダエンジニアリング	日本	11
エンバイロテック	日本	10
タルボッツ	イギリス	7
タカハシキカン	日本	5
ポリテクニク	オーストリア	5
トモエテクノ	日本	5

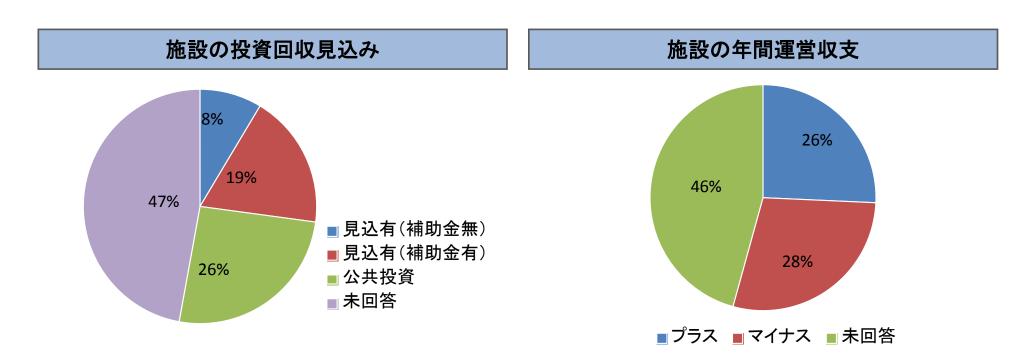
4/23

導入例①:温泉加温(北海道下川町)

- 用途:チップボイラによる温泉加温、給湯、施設暖房
- ボイラ: チップボイラ(180kW)
- 燃料使用量:チップ300t/年

導入例②:オフィス冷暖房(岡山県真庭市)

- 用途:吸収式冷凍機による冷暖房
- ボイラ:チップボイラ(550kW)、ペレットボイラ(450kW)の併設(バックアップなし)
- 燃料使用量:チップ200t/年、ペレット100t/年



事例調査で見られた課題:不適切なエンジニアリング

- 基本構想が、森林資源の活用や、地域産業振興の視点から作成され、経済性の確保や、環境への配慮といった重要な要素が検討されていない。
- 熱需要の量や変動に合わせて適切に設計されていない。
- ■ボイラにあったチップの形状や水分を需要者及び供給者が 理解していない。
- ■ボイラ等の機器の価格が高いが、更に、補助金の規定が建 屋やサイロのオーバースペックにつながっている可能性が ある。

課題①:経済性の軽視

- ■「森林資源活用」や「地域産業への配慮」の視点からの導入
- ■「経済性の確保」が軽視されている場合が多い

(出所)「木質バイオマスの効率的な利用を図るための技術支援報告書」森林環境リアライズ

課題①:高い設備費

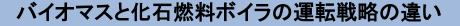
- 日本では、設備費の標準的なデータが存在しない。
- ただし、事例調査からは、ドイツ等に比べてかなりの高水準にあることが分かった。

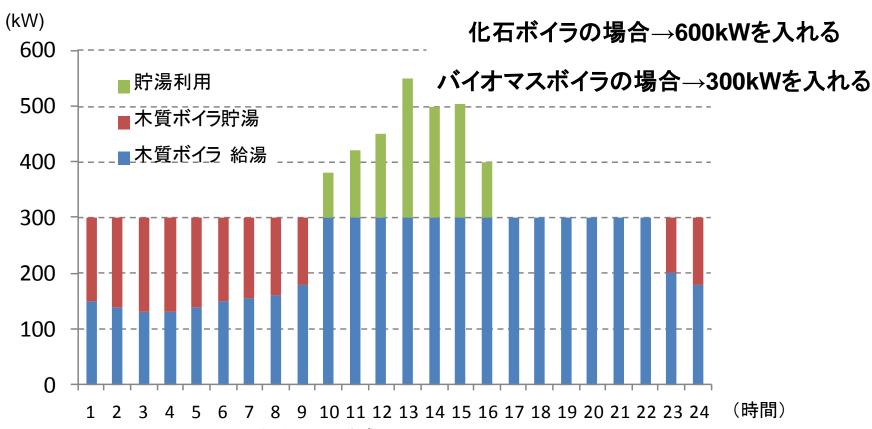
日本におけるバイオマスボイラの標準的な設備費(300kWの例)

費用項目	価格	(参考)ドイツ(270kW)
ボイラ本体価格	3,000~4,000万円	585万円(4万5,000ユーロ)
工事費	2,000~4,000万円	42.2万円 (3,250ユーロ)
サイロ・建屋	2,000~4,000万円	351万円(2万7,000ユーロ)
合計	7,000万~1億2,000万円	978.2万円(7万5,250ユーロ)
kW単価	23~40.0万円/kW	3.6万円/kW (278ユーロ)

(注)1ユーロ=130円で計算。ドイツの場合、ボイラ本体価格にチップ搬送装置等が含まれている。

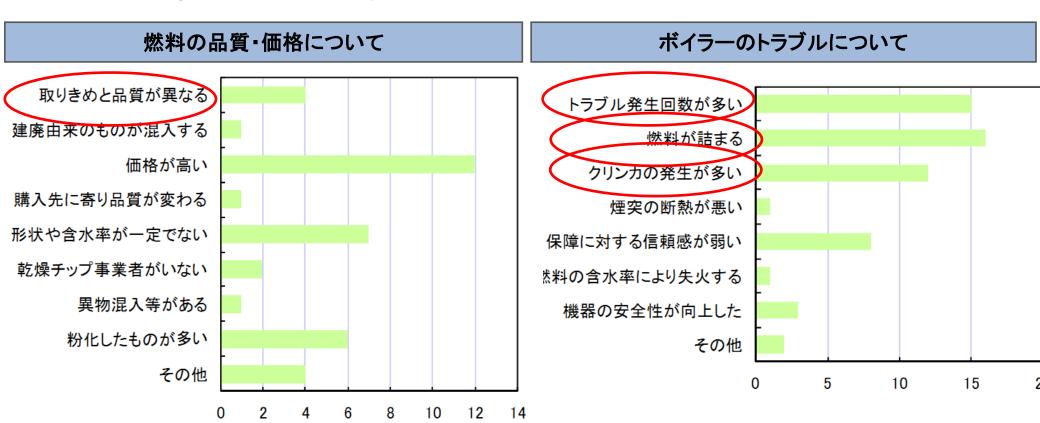
課題②:熱需要把握・ボイラ等システムの選定


- 熱需要の量・変動に合わせて、適切なシステムが設計されていない
- メーカーが設計に関与し、導入時に十分な比較検討が行われていない



(出所)木質バイオマス人材育成事業実施報告書(森のエネルギー研究所)

課題②:熱需要把握・ボイラ等システムの選定


■ 熱需要の量・変動に合わせて、適切なシステムが設計されていない

課題③:燃料に対する無理解

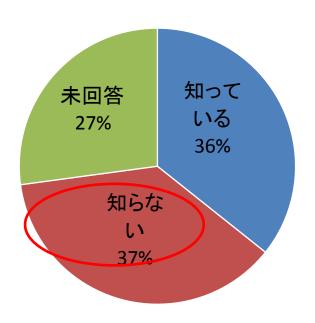
- 燃料についての基本的な知識(水分、形状)が不足している
- その結果、ボイラー運転時のトラブルが多発している

課題③:燃料に対する無理解

■ ボイラとチップの組み合わせ(形状/水分)について、事前によく理解しないまま、燃料調達計画を立てている

切削チップとチッパー

破砕チップと破砕機

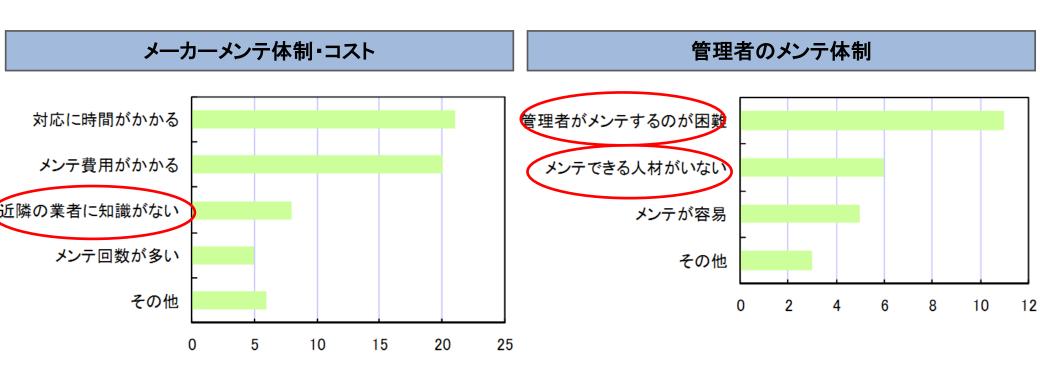


課題③:燃料に対する無理解

■ 燃料の水分について、基本的な知識が不足

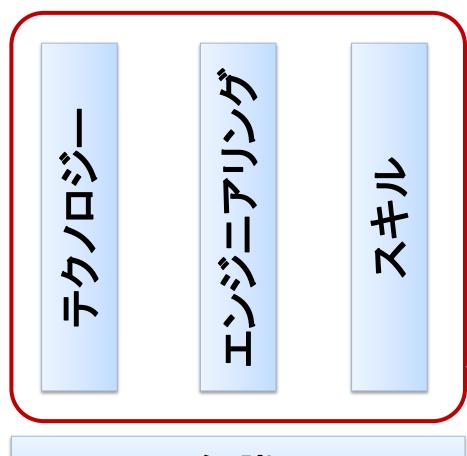
含水率の湿潤基準、絶乾基準の違いについて

含水率の計測



(出所)「木質バイオマスの効率的な利用を図るための技術支援報告書」森林環境リアライズ

課題④:保守•運転


- 保守・点検がメーカー任せで、ボイラについての理解が進まない
- 結果として、高コストに繋がっている可能性

(出所)木質バイオマス人材育成事業実施報告書(森のエネルギー研究所)

新しいやり方が必要だ

基本的なフレームワーク

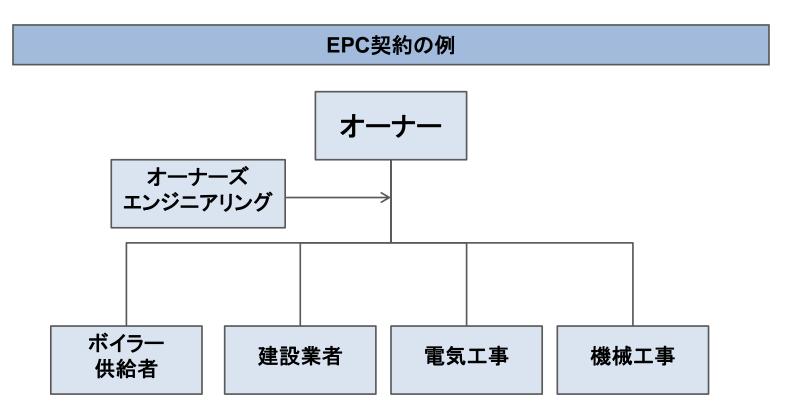
技術

需要「プル」 アプローチ ×供給プッシュ

知識

知識:実務者向けテキスト

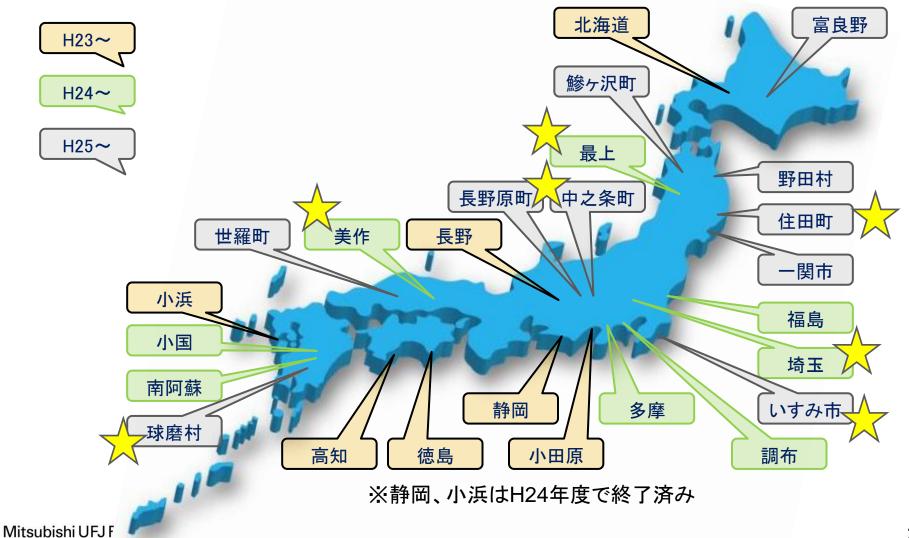
■ 事例調査分析に基づき、必要な知識を網 羅的に整理。


テキストの主な内容

- はじめに~導入の意義とポイント
- コスト構造
- 熱需要の把握
- 燃料の特徴と品質
- 燃料の生産方法
- プロジェクト・マネジメント
- ボイラー技術
- 国内事例調査結果の分析

エンジニアリング: オーナー主導型への転換

- プロジェクト・マネージャーによるオーナーズ・エンジニアリングへ
- その対価の確立と人材の育成が必要


Community Power: 地域主導型へ

- ■行政主導
 - ●個別政策目的
 - ●供給プッシュ
 - ●補助金
 - ●確実性
 - ●公平性

- ■地域主導
 - ●統合化された目的・政策群
 - ●需要プル
 - ●ファイナンス
 - ●イノベーション
 - ●透明性

広がる地域主導型アプローチ

■ 環境省:地域主導型再生可能エネルギー事業化検討委託業務

政策:供給プッシュから需要プルへ

需要(市場)を創出し、各プレーヤーの創意工夫を引き出す政策パッケージを!

- 稼働率を高める補助制度へ
 - 初期投資への補助ではなく、生産された熱量に対する補助(イギリスの再生可能熱インセンティブ制度)
 - オーナーズ・エンジニアリング(プロジェクト・マネージャー)の重要性の普及/補助
 - 初期投資負担を抑えるファイナンススキームの研究・普及
- 規格づくりと規制緩和
 - 燃料規格とボイラー規格
 - 規制緩和(ORCなど)
- 知識の普及、人材の育成
 - テキストに基づく研修会の開催など

まとめに替えて: 日独技術連携の可能性

- 日本のバイオマス利用は、まだスタートアップ段階。国内メーカーも少ない。
- 事例分析から、エンジニアリング上の様々な課題。
- ボイラーメーカーへの技術協力や、的確なエンジニア人材 の育成に日独連携の大きな可能性。
- ■政策面でも、「需要プル」型の政策への転換のために、欧州の情報収集が欠かせない。